Benign Tumor Program

The Department of Neurosurgery at Cedars-Sinai Medical Center treats the broad spectrum of benign intracranial disorders, including meningioma, epidermoid, dermoid, hemangioblastoma, colloid cyst, subependymal giant cell astrocytoma, pleomorphic xanthoastrocytoma, and craniopharyngioma. These conditions include:

Tumor Board

One component of the Department of Neurosurgery is the Wednesday morning Tumor Board. A comprehensive specialty team of neurosurgeons, medical oncologists, radiation oncologists, neurologists, neuroradiologists, pediatric oncologists, neuro-oncologists and neuropathologists review individual patient cases and provide recommendations on the most optimal treatment alternatives. The Tumor Board provides unparalleled expertise, allowing physicians to consult with a variety of specialists in one setting.

 

Sophisticated Imaging Technology for Open Procedures

The department currently uses state-of-the-art imaging technology when performing open surgery on intracranial lesions and tumors. Advanced imaging modalities precisely define brain structure and function, helping surgeons to identify eloquent areas of the brain prior to and during resection. In addition, we utilize sophisticated surgical microscopes and specially designed instruments for tumor resection.

The Department of Neurosurgery is the exclusive West Coast research center for ZEISS, an imaging technology leader. This relationship gives Cedars-Sinai patients access to new image-guided technologies even before they become widely available on the market. The combined technologies include computer-assisted navigation systems for neurosurgery that integrate the microscope, ultrasound, magnetic resonance imaging (MRI) and various other state-of-the-art technologies to improve outcomes in the neurosurgical operating suite.

The Department of Neurosurgery has recently developed a 21st century, advanced image-guided operating suite, complete with real-time imaging capabilities. In this environment, surgeons utilize state-of-the-art navigational microscopes, computerized navigation, functional intraoperative MRI studies and optical technologies to determine the exact location of a tumor in real-time, three-dimensional space. By pinpointing where the eloquent areas of the brain are in relationship to pathology such as tumors, surgeons are able to perform surgical resections more safely and efficiently.

Radiosurgical Treatment Alternatives

Patients at the Department of Neurosurgery have direct access to the full range of radiosurgery options, including conformal, fractionated and fixed radiosurgery. Cedars-Sinai Medical Center is on the leading edge of this field and has the first FDA-approved, three-dimensional software for conventional radiotherapy. Three-dimensional planning and computer-generated, conformal technology help reduce the amount of adjacent normal tissue contained within treatment fields, leading to reduced morbidity.

The department is also a leader in radiosurgery. Cedars-Sinai Medical Center is the first medical facility on the West Coast to offer the Radionics ConforMAX Mini-Multileaf Collimator (MMLC) and Head and Neck Localizer (HNL). The FDA-cleared ConforMAX MMLC is a device used to treat malignant and benign tumors. The technology precisely shapes the radiation beam to the targeted tumor, minimizing risk to surrounding healthy tissue and critical structures, such as the brain stem and optic nerves.

The MMLC system utilizes a neurosurgical headframe to immobilize the patient. Information from diagnostic imaging tests, including MRI, CT and angiography, is integrated with the Radionics Xplan treatment planning software that views the brain tumor three-dimensionally to determine the exact angles and radiation doses required to destroy the tumor. This process enables the team to accurately trace the tumor and position the MMLC to ensure the linear accelerator (LINAC) delivers the stereotactic conformal radiation to the precise location of the tumor.

If the patient has a benign lesion, like an arteriovenous malformation, radiosurgery will be performed whereby a single dose of radiation is delivered. If the lesion is primary or metastatic brain cancer, the patient will be treated with stereotactic radiotherapy, utilizing lower doses of fractionated radiation treatments over a series of sessions.

Surgical Technology Program

Department of Neurosurgery surgeons perform more than 300 operations for brain tumors each year. Their goal, however, is to make surgery for brain tumors obsolete. Our surgeons are working on a technique to destroy brain tumors non-invasively using focused microwaves. This technology could also be used to destroy other tumors without surgery including breast or prostate tumors. Microwave thermal ablation, also being developed at the department, could eliminate surgery for many types of cancer.

For an appointment, a second opinion or more information, please call 1-800-CEDARS-1 (1-800-233-2771) or e-mail us mdnsi@cshs.org.

Android app on Google Play