Meningiomas

Ray M Chu, MD
Brain Tumor center
Cedars Sinai Medical Center
Department of Neurosurgery
Overview

- Definition
- Epidemiology
- Types of brain tumors
- Diagnosis
- Treatment
Definitions

- Meninges- coverings of the brain (pia, arachnoid, dura)
- Meningiomas arise from arachnoidal cells
- Along venous sinuses
Location

- Parasagittal/falcine (25%)
- Convexity (surface of the brain) (19%)
- Sphenoid ridge (17%)
- Suprasellar (9%)
- Posterior fossa (8%)
- Olfactory groove (8%)
- Middle fossa/Meckel's cave (4%)
- Tentorial (3%)
- Peri-torcular (3%)
- Uncommon: lateral ventricle, optic nerve, foramen magnum, spinal
Central Brain Tumor Registry of the US (CBTRUS) 2006-2010
Age-Adjusted Incidence Rate per 100,000

Age Groups

20-44 45-54 55-64 65-74 75+

All Other Astrocytoma
Glioblastoma
Oligoastrocytic Tumors
Oligodendroglioma
Vestibular Schwannoma
Meningioma (Non-Malignant)
Tumors of the Pituitary

* ICD-O-3 Code: 9560
† ICD-O-3 Histology Codes: 9381, 9384, 9424, 9400, 9401, 9410, 9411, 9420
‡ ICD-O-3 Histology Codes: 9450, 9451, 9460
§ ICD-O-3 Histology Codes: 9530/0, 9531/0, 9532/0, 9533/0, 9534/0, 9537/0, 9538/0, 9538/1, 9539/1
Epidemiology

• Incidence approx. 8/100,000
 – Some asymptomatic
• Peak incidence 45
• Meningiomas are 2-3 times as common in women as men
 – Estrogen, progesterone receptors
Possible Causes of Brain Tumors and Risk Factors - Environmental
• 24 RH F with progressive bilateral vision loss for one year
• R eye can count fingers only
• L eye 20/40 corrected
• L temporal visual field loss
Clinical Features of Brain Tumors

- Symptoms of brain tumors are usually associated with increased ICP

- Monro-Kellie Hypothesis
 - Skull is a closed system comprising 3 elements
 - 80% brain tissue
 - 10% CSF
 - 10% intravascular blood
 - If one or more of these components increase in size, intracranial pressure will rise
 - A growing tumor in a closed system will elevate ICP
Clinical Features of Brain Tumors

- **Symptoms**
 - **Headache**
 - Generalized
 - Worse in the am
 - Aggravated by stooping, bending, and coughing
 - **Vomiting**
 - with acute rise in ICP
 - usually in the morning
Clinical Features of Brain Tumors

- Signs of focal damage from tumor
 - Seizures
 - Occurs in 30% of patients with brain tumors
 - Consequence of paroxysmal uncontrolled discharge of neurons.
Clinical Features

Frontal Lobe
- Contralateral weakness
- Expressive dysphasia
- Personality changes

Parietal Lobe
- Disturbed sensation
- Visual field defect
 - lower quadrantanopia

 - Gerstmann’s syndrome (Dominant hemisphere)
 - Right/left confusion, finger agnosia, acalculia, agraphia

 - (Non dominant) Dress apraxia, geographic agnosia, Construction apraxia, anosognosia

Occipital Lobe
- Visual field defect
 - homonymous hemianopia

Temporal Lobe
- Receptive dysphasia
- Visual field defect
 - upper quadrantanopia
WHO Meningioma Grading System

• Grade I, benign
 – Slow growing cells
 – Cells are well differentiated (resemble normal cells)
 – Least malignant
 – Good prognosis, usually associated with long-term survival
 – Approximately 80%

• Grade II, atypical
 – Relatively slow growing cells
 – Cells are moderately differentiated
 – Approximately 15%

• Grade III, anaplastic or malignant
 – Actively reproducing abnormal cells
 – Cells are poorly differentiated (lack the structure and function of normal cells and grow uncontrollably)
 – Abnormal cells which reproduce rapidly
 – Form new blood vessels to maintain rapid growth
 – Associated with poor prognosis
 – < 5%
Pathological Classification – Tumors of Meninges

- Meningiomas
 - Most are benign
 - Slow growing
 - Arise from arachnoid granulations not dura
 - Most lie around venous sinuses
 - Malignant meningiomas
 - Rapid recurrence

- Histologic Features
 - “whorl” pattern
Radiology

• Evaluation/Imaging
 – CT
 • Less costly, faster
 • Less detail
 – MRI
 • gadolinium (contrast) enhances tumor
 • Better detail
 • More difficult for patients with claustrophobia, problems sitting still
Meningiomas - Imaging

- Well circumscribed, dural tail
- Striking enhancement with contrast
- Often causes hyperostosis of adjacent bone (bony thickening)
Treatments

• Close observation

• Surgery
 – Craniotomy

• Radiation
 – Fractionated radiation
 – Radiosurgery

• Chemotherapy
 – Only for adjuvant treatment
Observation

- Small, asymptomatic tumors
- Little mass effect
- No cerebral edema
- Caution for certain areas of the brain where a small amount of growth would greatly increase the risks of future treatment
 - Proximity to the optic, oculomotor, facial, vestibulocochlear, vagus nerves; carotid artery; brain stem; spinal cord
Surgical resection

• Can be curative
• Can relieve pressure, symptoms
• Precise pathologic diagnosis
• Weigh risks vs benefits
 – Location of tumor
 – Medical health of the patient
Endovascular therapy

• May require pre-operative angiogram +/- embolization
 – Mapping the vascular supply and drainage from the tumor
 – Embolization of the vascular feeders
Extent of Resection

- 5% recurrence/ 10 years - complete resection including the dural root
- 10-15% - resection of the tumor + coagulation of the dural root
- 30% - resection of the tumor without the dural root
- 40+% - subtotal resection
- (Simpson grade)
Radiation therapy

– Stereotactic radiosurgery (SRS)
 • Focused radiation, one day treatment
 • X-knife – linear accelerator
 – TruBeam, Trilogy, Novalis, Cyberknife
 • Gamma Knife – cobalt 60
 • Usually for tumors < 3 cm

– Stereotactic radiotherapy (SRT)
 • Fractionated, five days

– Fractionated radiation
 • Six weeks
 • Lesion involving the optic nerve
Chemotherapy

- Few choices
- Mainly adjuvant therapy
- SOM 230- only somewhat effective
- Avastin (bevacizumab)- not very effective, question of causing hemorrhage
- Sutent (sunitinib)- can be effective, small risk of hemorrhage
Prognostic Factors

• Prognosis is based on:
 – Type of tumor
 – Tumor grade
 – Location
 – Spread (if any)
 – Age of the patient
 – How long the patient had symptoms before it was diagnosed
 – How much the tumor has affected the patient’s ability to function

• Favorable prognostic factors
 – Young age
 – High Karnofsky performance status (standard way of measuring the ability of cancer patients to perform ordinary tasks/ADLs)
 – Lower pathologic grade
Meningiomas

- Usually benign
- Can be observed if small, asymptomatic
- Surgical resection is a priority and can be curative
- Depending on size, location, health of patient, radiosurgery may be indicated
- Little choices for chemotherapy
Pathological Classification - Tumors of cranial nerves

- Vestibular Schwannomas (AKA acoustic neuroma)
 - Benign
 - Arise from the superior vestibular division of 8th CN
 - Incidence ↑ with neurofibromatosis (NFT) and with bilateral AN being pathognomonic of neurofibromatosis Type 2
Vestibular Schwannomas - Symptoms

- **Early Triad of Sx** - pressure on the 8th CN complex in IAC
 - hearing loss (insidious and progressive)
 - Tinnitus (high pitch)
 - Dysequilibrium/vertigo

- **Later sx** - compression of CN and brain stem
 - CN V and VII (>2 cm in size)
 - Otalgia
 - Facial numbness and weakness
 - CN IX, X, XII
 - Hoarseness
 - Dysphagia
 - Brain stem compression
 - Cerebellar signs
 - HA and N/V
 - Diplopia
Vestibular Schwannomas - Evaluation

• **Audiometry**
 – Baseline studies helpful for later comparison

• **MRI**
 – Round or oval enhancing tumor centered on IAC.
 – Tumor lies in cerebello-pontine angle.
 – Hydrocephalus
 • Large tumors may compress the 4th ventricle.
Vestibular Schwannomas - Treatment

- **Conservative treatment**
 - Follow symptoms
 - Audiometry for deterioration
 - Serial imaging for tumor progression
- **Radiation therapy**
 - Alone or in conjunction with surgery
 - SRS
 - EBRT
Vestibular Schwannomas - Treatment

- Surgery
 - Treatment of choice
 - Treatment aim
 - Tumor removal with minimal risk
 - Preservation of CN function
 - Retention of useful hearing unless already lost
Vestibular Schwannomas - Treatment

- Approaches
 - **Suboccipital**
 - Preferred route
 - Best for preservation of hearing
 - **Middle fossa**
 - Reserved for small, laterally located tumor
 - **Translabyrinthine**
 - Tumor with intracanalicular component
 - When hearing is non-functional
Vestibular Schwannomas – Post-op Care

• CN and brainstem dysfunction
 – CN VII
 • Impaired eye closure
 – Natural tears PRN
 – CN VIII
 • Vestibular dysfunction
 – N/V
 ✔ Antiemetic
 – Balance difficulties
 ✔ Safety
 – CN IX, X and XII
 • Swallowing difficulty

• CSF fistula
 – May develop through the
 • skin incision
 • ear (ruptured TM)
 • eustachian tube through the nose (rhinorrea) or back of throat.
 – Risk for meningitis
 – 25-35% resolves spontaneously
 – Treatment
 – Elevate HOB
 – Lumbar drain
 – Surgical CSF shunting
Pituitary Adenoma – Surgery

- Transphenoidal (procedure of choice)
 - Post op complications
 - Hormonal imbalance
 - ↓ ADH – Diabetes Insipidus
 - Tx: DDAVP SQ
 - ↓ Cortisol
 - ↓ TSH
 - Infection
 - CSF leak
 - Nasal septal perforation
 - Damage to structures in cavernous sinus