Minimally Invasive Surgery for Brain Tumors

Adam N Mamelak, MD, FACS
Professor of Neurosurgery
Co-Director, Pituitary Center
Cedars-Sinai Medical Center

Goals of Brain Tumor Surgery

- Tissue Diagnosis
- Alleviate Mass effect
- Reduce Swelling
- Restore CSF pathways
- “Cure”
Disadvantages of Traditional BT surgery

- Large exposures of cortex
 - Higher risk non-involved brain injury
 - Higher risk subdural and epidural hematoma
 - Higher risk osteomyelitis
 - More disfiguring
 - Greater blood loss
 - Longer recovery times

Goals of MIS Surgery for Brain Tumors

- Same end goals of traditional BT surgery PLUS:
 - Reduced morbidity from smaller openings
 - Reduced pain
 - Better cosmesis
 - Shorter hospital stays
Guiding Principles of MIS

- Accurate localization
- “Keyhole” access
- Natural working space
 - Cisterns
 - CSF pathways
 - Bony caves
- MIS not applicable to every case
Results: Accurate localization so can rely on small craniotomy

Endoscopy: Minimize the needed working space and maximize field of view
Field of view: Endoscope v. Microscope

- Ethmoid
- Columellar
- Sublabial

Spencer et al, Laryngoscope, 1999

See It Better

A High-Definition Exoscope System for Neurosurgery and Other Microsurgical Disciplines: Preliminary Report

Adam N. Mamelak, MD, Moise Danielpour, MD,
Keith L. Black, MD, Masanobu Hagih, MD, and George Berci, MD
Applications: Common MIS Approaches

- Supra-orbital eyebrow approach
- Intraventricular Endoscopy
- Endonasal Endoscopy

Supra-orbital Eyebrow Craniotomy

- Very small opening
- Eyebrow Incision
- Access to CSF cisterns
- Improved cosmesis
- Less post-op pain and craniotomy related complications
- Uses- Tumors of subfrontal and suprasellar area
Intraventricular Endoscopy

- Hydrocephalus
- Intraventricular tumors
- Pineal gland biopsies

Limits:
- Bleeding
- “In-line” instruments only
- Limiting ability to angle
Endonasal Transsphenoidal

- Developed by ENT surgeons in 80s but not widely adapted by neurosurgeons
 - Lack of visualization
 - Fear of infection
 - Narrow working space
- Less tissue destruction
- Direct access
- Easier healing
- Less pain

Endoscopic Transsphenoidal

- Utilize a rigid endoscope to illuminate and magnify in place of microscope
- Minimal disruption of nasal tissues
- Larger working room compared with traditional methods
Endoscopic Endonasal Surgery

- Utilize a rigid endoscope in place of microscope
- Minimal disruption of nasal tissues
- Larger field of view
- Shorter hospital stay
- Greater patient comfort
- Safe and maximal tumor removal

Caveat: Requires comfort with endoscope

Extended Transsphenoidal Surgery: The Next Horizon

Pre-Op

Post-Op
Limits of MIS for the Brain

- Lack of Potential working Cavity
- Poor tolerance of brain to manipulation
- Functional Anatomy
- Limited number of “keyholes”
- Vascular control

Near Future Advances

- MRI Guided ablations
 - Visualase™
- 3D Endoscopy
 - VisionSense™
- Robotic Surgery
 - DaVinci™
- “Port” surgery via brain dialators
THANK YOU