What does the Brain Tumor Board do?

John S. Yu, M.D.
Professor and Vice Chair
Department of Neurosurgery
Director, Brain Tumor Center of Excellence
Director, Surgical Neuro-Oncology
Cedars Sinai Medical Center
A multidisciplinary group of health-care workers reviewing patient histories and data to make recommendations

Neurosurgeons
Neuro-radiologists
Neuro-pathologists
Neuro-oncologists
Radiation oncologists
Medical oncologists
Nurses
What tumors do we discuss?

Statistics

- Of all primary brain tumors:
 - 35% are Astrocytomas including Glioblastomas
 - 27% are Meningiomas
 - 8% are Nerve sheath tumors (acoustic neuromas, vestibular schwannomas, neurilemmomas)
 - 7% are Pituitary tumors
 - 3% are Lymphomas
 - 3% are Oligodendrogliomas
 - 2% are Medulloblastomas/embryonal/primitive

- Metastatic brain tumors are the most common brain tumor, with an annual incidence more than 4 x greater than that of primary brain tumors.
 - Cancers most commonly metastasize to the brain are lung and breast.
Clinical History of Brain Tumors

- **Symptoms** of brain tumors are usually associated with increased ICP
 - Headache
 - Generalized
 - Worse in the am
 - Aggravated by stooping, bending, and coughing
 - Vomiting
 - usually in the morning
 - with acute rise in ICP
Clinical Features of Brain Tumors

Signs of focal damage from tumor

Disturbed Cerebral Function

Parietal Lobe
- Disturbed sensation
- Visual field defect
 - lower quadrantanopia

Occipital Lobe
- Visual field defect
 - homonymous hemianopia

Temporal Lobe
- Receptive dysphasia
- Visual field defect
 - upper quadrantanopia

Gerstmann’s syndrome (Dominant hemisphere)
- Right/left confusion, finger agnosia, acalculia, agraphia

(Non dominant) Dress apraxia, geographic agnosia, Construction apraxia, anosognosia

Frontal Lobe
- Contralateral weakness
- Expressive dysphasia
- Personality changes
Astrocytomas - Imaging

- Low grade astrocytoma grade I/grade II
 - Hyperintense on T2
 - Hypointense on T1
 - Little, or no enhancement
 - Pilocytic astrocytomas –
 - Contrast enhancing often cystic with mural nodule
 - Little, if any edema
 - Little, or no mass effect
Astrocytomas - Imaging

- Anaplastic astrocytoma grade III/GBM grade IV
 - Complex enhancement on contrast imaging
 - Areas of hemorrhage
 - Mass effect
 - Irregular ring enhancement with hypointense center represents necrosis
- GBM
Pathological Classification of Brain Tumors

In 1979 the World Health Organization (WHO) drew up an internationally agreed classification of intracranial tumors based on the tissue of origin.

- 9 types of CNS tumors
 - Tumors of neuroepithelial tissue
 - Tumors of the meninges
 - Tumors of cranial and spinal nerves
 - Hematopoietic neoplasms
 - Germ cell tumors
 - Cysts and tumor-like lesions
 - Tumors of the sellar region
 - Local extensions from regional tumors
 - Metastatic tumors
Pathology of Brain Tumors

- Primary brain tumors can be classified as either:
 - **Benign**
 - Very slow growing cells
 - Distinct borders, rarely spreads
 - Well differentiated (cells appear almost normal)
Pathology of Brain Tumors

- **Malignant**
 - Rapid growth
 - Poor differentiation
 - Increased cellularity, mitosis, necrosis and vascular proliferation
 - However, metastases to extracranial sites rarely occur.
Possible Causes of Brain Tumors and Risk Factors - Genetic Factors

- Genetic Factors
 - Transformation of normal cells to malignant growth probably results from a variety of different processes:
 - Normal cell growth and differentiation controlled by Proto-oncogenes
 - Expression is altered resulting in oncogenes
 - Alters encoded proteins transforming cell into malignant state
 - Inactivation of expression of tumor suppressor genes
 - Over expression of genes controlling growth factor.
Mutations leading to infiltrative astrocytic tumors.

- Molecular studies have identified some of the genetic changes that underlie the pathologic differences among astrocytic tumors; progression in tumor grade is associated with an ordered accumulation of mutations.
Astrocytoma - Treatment

- Depends on a number of factors:
 - Site of lesion
 - Degree of malignancy
 - +/- Elevated ICP
 - Degree of disability and effect of steroid therapy
 - Suspected nature of tumor on imaging
 - Patient’s age
 - Patient’s wishes
Common Brain Tumors – *Astrocytoma* - Treatment

- **Grade I and Grade II**
 - **Surgery**
 - Complete surgical resection if possible
 - Biopsy or partial resection is recommended in almost all cases to determine pathology
 - **Radiation Therapy**
 - Fractionated XRT to residual tumor postop
 - **Chemotherapy**
 - Only with tumor progression
 - PCV (procarbazine, CCNU, vincristine) to stabilize growth.
Common Brain Tumors – *Astrocytoma - Treatment*

- **Grade III and Grade IV**
 - Standard against which other treatments are compared:
 - **Surgical Resection**
 - Followed by external beam radiation (EBRT)
 - 40 Gy whole brain + 15-20 Gy to tumor bed = 60 Gy
 - Median survival of 17 weeks after BX + XRT, versus 30 weeks for SX and XRT.
Common Brain Tumors – *Astrocytoma* - Treatment

- **Chemotherapy**
 - **Alkylating agents** benefit ~ 10% of patients
 - Carmustine (BCNU)
 - Cisplatinum (Cisplatin)
 - **Temozolomide** (Temozolomide)
 - FDA approved for treatment of initial relapse of AA and progression
 - Used (off label) for newly dx’d GBM and AA
Treatment of Brain Tumors

- **Treatment of Edema**
 - Dexamethasone
 - Mannitol

- **Seizure Prophylaxis**
 - Dilantin
 - Valproic Acid
 - Tegretol
 - Keppra

- **Neurosurgery**
 - Surgical Resection
 - Biopsy
 - CSF access procedures

- **Radiation therapy**
 - SRT
 - SRS

- **Chemotherapy**
 - Oral
 - Alkylating agents
 - Intracranial wafers

- **Clinical Trials**
 - Immunotherapy
Treatment of Brain Tumors

Immunotherapy

- Immunotherapy
 - T-cell mediated antitumor immunity
 - Pt’s with gliomas demonstrate impaired immune function.
 - Glioma cells down regulate surface expression of MHC molecules, depriving infiltrating immune cells of signals needed to recognize and clear tumor cells.
 - Dendritic cells (antigen presenting cells) are pulsed with tumor protein to make a vaccine.
 - DC introduces tumor associated antigen (TAA) to T-cells.
 - Activated T-cells eliminate tumor cells.
Brain Tumor Board

Questions?