FAILURE OF HOMEOSTATIC MODEL ASSESSMENT OF INSULIN RESISTANCE (HOMA-IR) TO DETECT MARKED DIET-INDUCED INSULIN RESISTANCE IN DOGS

Marilyn Ader, Darko Stefanovski, Joyce M. Richey, Stella P. Kim, Cathryn M. Kolka, Viorica Ionut, Morvarid Kabir, and Richard N. Bergman

Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA

RUNNING TITLE: HOMA-IR Does Not Detect Diet-Induced Resistance

Address correspondence to:

Marilyn Ader, Ph.D.
Associate Director
Diabetes and Obesity Research Institute
Cedars-Sinai Medical Center
8700 Beverly Boulevard, THAL E106
Los Angeles, CA 90048
(310) 967-2792 Phone
(310) 967-3869 FAX
Marilyn.Ader@cshs.org
ABSTRACT

Accurate quantification of insulin resistance is essential for determining efficacy of treatments to reduce diabetes risk. Gold standard methods to assess resistance are available (e.g. hyperinsulinemic clamp or minimal model), but surrogate indices based solely on fasting values have attractive simplicity. One such surrogate, the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), is widely applied despite known inaccuracies in characterizing resistance across groups. Of greater significance is whether HOMA-IR can detect changes in insulin sensitivity induced by an intervention. We tested the ability of HOMA-IR to detect high fat diet-induced insulin resistance in 36 healthy canines, using clamp and minimal model analysis of the intravenous glucose tolerance test (IVGTT) to document progression of resistance. The influence of pancreatic function on HOMA-IR accuracy was assessed using the acute insulin response during the IVGTT (AIR\textsubscript{G}). Diet-induced resistance was confirmed by both clamp and minimal model (p<0.0001), and measures were correlated with each other (p=0.001). In striking contrast, HOMA-IR ([fasting insulin (µU/ml) x fasting glucose (mM)] / 22.5) did not detect reduced sensitivity induced by fat feeding (p=0.22). In fact, 13 of 36 animals showed an artifactual decrease in HOMA-IR (i.e. increased sensitivity). The ability of HOMA-IR to detect diet-induced resistance was particularly limited under conditions when insulin secretory function (AIR\textsubscript{G}) is less than robust. In conclusion, HOMA-IR is of limited utility for detecting diet-induced deterioration of insulin sensitivity quantified by glucose clamp or minimal model. Caution should be exercised when using HOMA-IR to detect insulin resistance when pancreatic function is compromised.
It is necessary to use other, accurate indices to detect longitudinal changes in insulin resistance with any confidence.

INTRODUCTION

Insulin sensitivity can be accurately quantified from the hyperinsulinemic glucose clamp (1) or intravenous glucose tolerance test (IVGTT; (2)), while indices derived from the oral glucose tolerance test (e.g. (3,4)) may be confounded by the influence of glucose absorption (5). The use of surrogate indices based solely on fasting measurements are often considered cost-effective in both small and large-scale clinical and genetic studies (e.g. (6,7)). One widely used surrogate is the Homeostatic Model Assessment of Insulin Resistance, or HOMA-IR (8). HOMA-IR (= [fasting insulin x fasting glucose] / 22.5) is based on computer estimation of fasting values expected for a given degree of insulin resistance and pancreatic β-cell function, and was derived from hyperglycemic clamp data obtained from normal healthy subjects (9). A value of 1.0 is considered normal, with higher indices reflecting a greater degree of insulin resistance. Subjects undergoing severe caloric restriction appear to be extremely insulin sensitive, as reflected in HOMA-IR as low as 0.29 (10), while morbidly obese subjects with type 2 diabetes may exhibit over 20-fold greater values of the HOMA-IR index (11).

It is unknown whether HOMA-IR can accurately quantify longitudinal improvements in, or deteriorations of, insulin sensitivity. HOMA-IR is calculated from fasting glucose and insulin, but resistance often develops in the absence of elevated glycemia (12). If insulin resistance was accompanied by a β-cell defect, fasting hyperinsulinemia may not occur, and hormone levels may not exceed “normal” values
(13). Furthermore, when HOMA-IR is used under conditions when fasting glucose is unchanged, the index is equivalent to fasting insulin, and it is unclear whether the surrogate measure offers any significant advantage over the hormone measurement alone.

Herein, we test the accuracy of HOMA-IR to detect longitudinal development of insulin resistance in dogs fed a fat-supplemented diet. Resistance was quantified by euglycemic clamps and minimal model analysis, and compared to diet-associated changes in HOMA-IR.

METHODS

Animals

Procedures were performed on 36 male mongrel dogs (28.2±0.5 kg); data were pooled from previous published studies (14-16). All procedures were approved by the USC Institutional Animal Care and Use Committee.

Diet

Dogs were fed a weight-maintaining diet of 3885 kcal/day (38% carbohydrates, 26% protein, 35% fat). After 2-3 weeks of baseline metabolic testing, animals were switched to a hypercaloric high fat diet (5236 kcal/day, derived from 28% carbohydrates, 19% protein, and 51% fat). Animals were fed at 9 AM, and were given 3 hours to consume available ration.

Experimental Design

All dogs underwent comprehensive assessment of insulin sensitivity prior to and
after a 6 week period of high fat feeding, with both the hyperinsulinemic euglycemic clamp (EGC) and minimal model analysis of the IVGTT. Also, HOMA-IR was calculated from fasting glucose and insulin at each of these two study periods. Development of diet-induced obesity was confirmed by magnetic resonance imaging. All procedures were performed after overnight fasting and all sensitivity tests occurred in conscious, unstressed animals.

1) **EGC:** Tracer (25 µCi + 0.25 µCi/min; Perkin-Elmer NEN) was infused into a peripheral vein and continued for a 90-min equilibration period. After basal blood sampling, somatostatin (1 µg/min per kg; Bachem) was infused i.v. along with insulin (regular purified pork; Lilly) from t=0 to 180 min at either 0.75 mU/min per kg (n=19) or 1.15 mU/min per kg (n=17) to induce hyperinsulinemia. Euglycemia was maintained by variable rate 50% dextrose infusion, spiked with 3-³H-glucose (specific activity: 2.2 ³Ci/g). Blood samples were obtained from a jugular vein catheter (n=8) or sampling port (n=17) surgically implanted > 1 week prior to testing, or via peripheral limb intracatheters (n=11). Samples were drawn every 10-15 min for 180 min, and assayed for glucose, insulin, and tracer.

2) **IVGTT:** Glucose (0.3 g/kg) and insulin (0.03 U/kg) were injected intravenously at t = 0 and 20 min, respectively, and 31 blood samples were drawn from t = -30 min to 180 min and assayed for glucose and insulin.

Blood Sampling and Assays

Blood was collected in lithium and heparin coated tubes containing EDTA, centrifuged, and plasma stored at -80°C. Glucose was assayed by the glucose oxidase
technique (YSI Model 2300), with intra-assay coefficient of variation (CV) <1%. Insulin
was measured in duplicate by ELISA (Linco Research; St. Charles, MO), with detection
limit of 5 pM, and intra- and inter-assay CV of 2±1% and 5±1%, respectively.

Calculations and Data Analysis

Pooled data from multiple studies with similar feeding regimens were used to test
the ability of HOMA-IR to detect changes in insulin sensitivity induced by fat feeding, as
described below:

1) Insulin sensitivity

A) Euglycemic Clamp: EGCs were used to quantify whole-body insulin
sensitivity (SI_{CLAMP}), as well as sensitivity of peripheral and liver (17). SI_{CLAMP} was
calculated as:

\[SI_{CLAMP} = \frac{\Delta GINF}{\Delta INS \times GLU_{ss}} \],

where \(\Delta GINF \) and \(\Delta INS \) are respective increments in glucose infusion rate and insulin
during exogenous insulin infusion, and \(GLU_{ss} \) is the steady state glucose concentration
(final 30 minutes of the EGC). In a subset of animals (n=31), rates of glucose uptake
(\(R_d \)) and hepatic glucose output (HGO) were calculated using Steele’s equations
modified for use with labeled glucose infusion (18). Peripheral (SI_{pCLAMP}) and hepatic
(SI_{HGOCLAMP}) were defined as:

\[SI_{pCLAMP} = \frac{\Delta R_d}{\Delta INS \times GLU_{ss}}, \]
\[SI_{HGOCLAMP} = \left| \frac{\Delta HGO}{\Delta INS \times GLU_{ss}} \right|, \]

where \(\Delta R_d \) and \(\Delta HGO \) are the changes in \(R_d \) and HGO from basal to steady state.
B) **IVGTT:** The insulin sensitivity index (S_{imm}) was calculated from minimal model analysis of the IVGTT (MINMOD Millennium, ver. 6.02; ref. (19)).

C) **HOMA-IR** (8):

$$\text{HOMA-IR} = \frac{\text{insulin} \times \text{glucose}}{22.5} \quad [2],$$

where insulin and glucose are plasma concentrations after an overnight fast (in μU/ml and mM, respectively; mean of 3 samples, assayed in duplicate).

2) **Glucose-stimulated insulin response** (AIR_G)

We calculated AIR_G from the IVGTT, as the incremental insulin area under the curve from 0 to 10 minutes after glucose injection.

Statistics

Statistics (t-test and ANOVA, with Tukey's post-hoc analysis when overall significance was detected) were performed using MINITAB (ver. 13.32; State College, PA). Statistical significance was set at $p \leq 0.05$.

RESULTS

Baseline Assessment

Dogs had fasting glucose and insulin concentrations in the normal range $(89.4\pm1.2 \text{ mg/dl and } 11.6\pm1.0 \mu\text{U/ml, respectively})$, with body weight within a narrow range $(28.2\pm0.5 \text{ kg; CV = 10\%})$. Body adiposity varied widely (3 to 6-fold range for visceral and subcutaneous fat mass, respectively). S_{CLAMP} ranged from 5.9 to 72.9 dl/min per kg per μU/ml (12.4-fold variation; mean: 34.5 ± 2.6), and similar variability was observed in S_{MM} (9.1-fold range; mean: $4.53\pm0.39 \times 10^{-4} \text{ min}^{-1}$ per μU/ml). HOMA-IR
was 2.67±0.16, and the range from most sensitive (0.86) to most resistant animal (4.64) was narrow (5.4-fold). Baseline HOMA-IR did not correlate with either clamp- or IVGTT-based indices (Fig. 1).

Effect of Fat Feeding

Consumption of a high fat diet induced substantial increases in both total (+64±7%) and regional adiposity (+44±5% and +110±12% for visceral and subcutaneous depots, respectively; p<0.0001). Diet-induced obesity caused significant insulin resistance (Fig. 2A). SI_{CLAMP} declined from 34.5±2.6 to 22.9±1.6 dl/min per kg per μU/ml (p<0.0001), and resistance developed in 32 of 36 animals tested – both in insulin action on R_d ($SI_{p\text{CLAMP}}$; -51±12%; p<0.0001) and HGO ($SI_{\text{HGO}_{\text{CLAMP}}}$; -96±45%, p<0.0001). Insulin resistance was confirmed by IVGTT (SI_{mm}: 4.5±0.4 to 2.9±0.2 x 10$^{-4}$ min$^{-1}$ per μU/ml, p<0.0001; Fig. 2B). Clamp-based whole-body insulin sensitivity and SI_{mm} were well correlated (p=0.001).

Diet-induced resistance was not detected by HOMA-IR (Fig. 2C). Twenty-three of 36 animals showed an increase in HOMA-IR, denoting increasing insulin resistance (ΔHOMA-IR = 1.1±0.2); thirteen (36% of all animals) showed an artifactual decrease (ΔHOMA-IR = -0.8±0.1). The overall change in HOMA-IR was minimal, with a large SE (ΔHOMA-IR = 0.4±0.2); change in HOMA-IR failed to attain statistical significance despite the large number of animals (p=0.50).

The small increase in HOMA-IR with fat feeding was, by definition, the result of due to observed effects of diet on fasting glucose and insulin (equation 2). Glycemia was unaffected by fat feeding, but animals did develop modest fasting hyperinsulinemia
(15.1±1.3 µU/ml; p=0.0005). HOMA-IR offered no additional advantage over insulin values *per se* in predicting development of insulin resistance.

Impact of AIR_G on HOMA-IR Accuracy

Development of diet-induced insulin resistance led to increased AIR_G (pre-fat: 609±38, post: 850±52 µU/ml). HOMA-IR displayed a strong, positive correlation with AIR_G (Fig. 3), consistent with the known reciprocal relationship between insulin sensitivity and insulin responsiveness (20).

The ability of HOMA-IR to detect insulin resistance is centered on the development of hyperinsulinemia, which is proportional to insulin responsiveness (i.e. AIR_G). Using both baseline and post-fat feeding data, we examined the influence of AIR_G on HOMA-IR accuracy by segregating data into groups below or above the mean AIR_G (730 µU/ml, mean of 72 assessments; Fig. 4). In animals with a robust AIR_G (Fig. 4A), HOMA-IR was correlated with SI_{CLAMP} (r = -0.36; p=0.046), but HOMA-IR failed to accurately estimate insulin sensitivity in animals with lesser β-cell function (p=0.575; Fig. 4B). Failure to detect changes in sensitivity was also observed with QUICKI (21), a related surrogate (p=0.014 and p=0.268 for correlations in animals with high and low AIR_G, respectively), and detection was not improved with second-generation “HOMA2-IR” estimates http://www.dtu.ox.ac.uk/homacalculator. The ability of HOMA-IR (or QUICKI) to detect development of insulin resistance is dependent upon β-cell function.

DISCUSSION

Accurate quantitation of insulin sensitivity is critical for comprehensive metabolic phenotyping essential in the search for genetic loci for diabetes risk. The euglycemic
clamp (1) measures the steady state response to hyperinsulinemia to quantify whole body insulin sensitivity, as well as indices of both peripheral and hepatic sensitivity. The IVGTT-based minimal model (2,19) analyzes the dynamic glucose-insulin relationship following glucose injection to yield the insulin sensitivity index, as well as measures of β-cell function and insulin clearance (e.g. (22,23)). Equivalence of the clamp- and IVGTT-based indices of sensitivity has been demonstrated (17). Surrogate measures of insulin sensitivity (8,21) require only measurement of fasting glucose and insulin, and represent the simplest approach. But the present study reveals serious shortcomings of surrogate measures HOMA-IR, as well as QUICKI, to detect confirmed development of insulin resistance.

At baseline, animals exhibited a wide range of insulin sensitivity, and clamp-based values were well correlated with minimal model indices. But there was no significant relationship between either clamp- or minimal model-based measures of baseline sensitivity and corresponding HOMA-IR (Fig. 1). HOMA-IR detected insulin resistance in animals where clamps revealed normal sensitivity. The median value of HOMA-IR was 2.50, but animals considered resistant by virtue of HOMA-IR exceeding the median were not resistant by clamp-based SI_{CLAMP} (32.7±3.8 vs 36.2±3.6 dl/min per kg per µU/ml for animals with HOMA-IR values below the median; p=0.81).

The interventional methods were both effective in detecting deterioration of whole-body insulin sensitivity induced by high fat diet. SI_{CLAMP} and SI_{mm}, decreased by 34% and 37%, respectively (Fig. 2A and B), and clamp data indicate resistance developed at both hepatic and peripheral tissues. In stark contrast, HOMA-IR was of surprisingly limited utility in detecting this diet-induced resistance (Fig. 2C).
a modest increase in HOMA-IR after fat feeding -- the mean change was small, with a large SE, due in part to small, diet-induced reduction in fasting glycemia in 17 of 36 animals (ΔHOMA-IR = 0.3±0.3) -- but this change was not statistically significant (p=0.22). Moreover, 13 of the 36 animals tested showed an artifactual decrease in HOMA-IR (ΔHOMA-IR = -0.8±0.1).

We observed a strong correlation between HOMA-IR and the AIRG (Fig. 3). We segregated HOMA-IR and SI⁰⁰ data into two groups, reflecting animals with high (> mean; n=32) or low AIRG (≤ mean; n=40). HOMA-IR accuracy was indeed dependent on the magnitude of the insulin secretory response (Fig. 4). When β-cell function was robust (i.e. AIRG exceeded the mean), HOMA-IR yielded an accurate estimation of insulin sensitivity. The limitations of HOMA-IR are exposed in subjects that display a lesser insulin secretory response. No animal in this study were diabetic; the low AIRG is a likely reflection of high insulin sensitivity in those animals.

HOMA-IR accuracy is weakest for estimating insulin sensitivity under conditions when insulin secretory function is in the normal range, but less robust. Thus, HOMA-IR should be viewed with skepticism if β-cell function is not known a priori in all individuals. Relationship between HOMA-IR as a quantitative trait and specific variants may not indicate genetic signals for insulin resistance per se, but may more represent signals for β-cell function, as HOMA-IR may reflect islet cell function or metabolic clearance of insulin, rather than insulin resistance itself (24).

AUTHOR CONTRIBUTIONS

M.A. is the guarantor of this work and, as such, had full access to all the data in
the study and takes responsibility for the integrity of the data and the accuracy of the
data analysis. M.A. conceived of the study, designed the experiments, analyzed and
interpreted the data, and wrote the manuscript. D.S. assisted with data and statistical
analysis. S.P.K., J.M.R., C.M.K., V.I., and M.K. performed experiments and MRI
analysis. R.N.B. conceived of the study, interpreted the data, and assisted with
manuscript preparation.

ACKNOWLEDGEMENTS

Authors offer their sincere gratitude to Ed Zuniga and Edgardo Paredes for their
gentle care and treatment of the experimental animals and to Dr. Erlinda Kirkman for
her expert veterinary care and advice. We confirm that no author has any conflict of
interest with the information or data contained in this manuscript.

REFERENCES

1. Andres R, Swerdloff R, Pozefsky T, Coleman D: Manual feedback technique for the
control of blood glucose concentration. In Automation in Analytical Chemistry. Skeggs J,

2. Bergman RN, Ider YZ, Bowden CR, Cobelli C: Quantitative estimation of insulin

3. Matsuda M, DeFronzo RA: Insulin sensitivity indices obtained from oral glucose
tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care
22:1462-1470, 1999

4. Gutt M, Davis CL, Spitzer SB, Llabre MM, Kumar M, Czarnecki EM, Schneiderman N,
Skyler JS, Marks JB: Validation of the insulin sensitivity index (ISI(0,120)): comparison

5. Hucking K, Watanabe RM, Stefanovski D, Bergman RN: OGTT-derived measures of
insulin sensitivity are confounded by factors other than insulin sensitivity itself. Obesity
16:1938-1945, 2008

FIGURE LEGENDS

Figure 1. Relationship between baseline (pre-fat feeding) HOMA-IR values and either clamp-based (top) or IVGTT-based (bottom) indices of insulin sensitivity. There was no significant correlation between HOMA-IR and either measure (p>0.1).

Figure 2. Diet-induced changes in insulin sensitivity, measured from (A) euglycemic clamp, (B) IVGTT, or (C) HOMA-IR. Both clamp and IVGTT detected substantial diet-induced insulin resistance. In contrast, changes in HOMA-IR did not reflect development of resistance after fat feeding.

Figure 3. Correlation between HOMA-IR and glucose-stimulated insulin release (AIRg). Using both baseline and post-fat data (n=72 assessments), we observed a strong linear relationship between HOMA-IR and the acute insulin response (r = 0.592; p < 0.0001).

Figure 4. Impact of AIR_g on the ability of HOMA-IR to accurately estimate insulin sensitivity. All data (baseline and post-fat; n=72 assessments) were separated according to (A) high AIR_g (> mean of 730 μU/ml; n=32) and (B) low AIR_g (≤ mean; n=40). HOMA-IR provided an accurate reflection of SI_CLAMP only when a robust insulin response is evident (p=0.008, versus p=0.597 when AIR_g is low).
Relationship between baseline (pre-fat feeding) HOMA-IR values and either clamp-based (top) or IVGTT-based (bottom) indices of insulin sensitivity. There was no significant correlation between HOMA-IR and either measure ($p>0.1$).

131x169mm (120 x 120 DPI)
Diet-induced changes in insulin sensitivity, measured from (A) euglycemic clamp, (B) IVGTT, or (C) HOMA-IR. Both clamp and IVGTT detected substantial diet-induced insulin resistance. In contrast, changes in HOMA-IR did not reflect development of resistance after fat feeding.
Correlation between HOMA-IR and glucose-stimulated insulin release (AIRg). Using both baseline and post-fat data (n=72 assessments), we observed a strong linear relationship between HOMA-IR and the acute insulin response ($r = 0.592; p < 0.0001$).
Impact of AIRG on the ability of HOMA-IR to accurately estimate insulin sensitivity. All data (baseline and post-fat; n=72 assessments) were separated according to (A) high AIRG (> mean of 730 µU/ml; n=32) and (B) low AIRG (≤ mean; n=40). HOMA-IR provided an accurate reflection of SICLAMP only when a robust insulin response is evident (p=0.008, versus p=0.597 when AIRG is low).